
Frequency Domain Gravitational Waveform Modelling for Eccentric Black Hole Binaries

Abstract: LIGO’s first-ever detection of gravitational waves was consistent with
black holes moving in circular orbits as predicted by General Relativity. The
future generation of gravitational waves detectors like LISA will be able to
detect signals from binaries that have very small orbital eccentricities when
they enter the low-frequency band of such detectors. The gravitational
waveform from such systems, modelled using Post-Newtonian methods are
used as template banks to match the signals from the detector. The work
follows analytical modelling of gravitational waveforms of eccentric binary
black holes in the frequency domain. Post-Newtonian waveform analytic
models in the frequency domain admit simple structure, allowing
computationally efficient data analysis. We use previously computed time-
domain waveforms for compact binaries in eccentric orbits to calculate the
frequency domain waveform amplitude under small-eccentricity
approximation. The gravitational waveform of a merging stellar-mass binary is
described at leading order by a quadrupolar mode. However, the complete
waveform includes higher-order modes. The following work consists of these
higher harmonics in the frequency domain waveform.
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Motivation and Modelling Compact Binaries

Eccentric compact binaries

Gravitational waves carry energy from in spiralling binaries

and circularise the orbits. Hence usually the inspiralling

compact binaries are modelled for quasi-circular orbits. There

is an increased interest in inspiralling binaries with very small

orbital eccentricity when they enter the frequency band of

Gravitational wave detectors (Fig[2]). If the eccentricity is not

accounted for, it can cause a significant systematic error in

mass parameters of an inspiralling binary. The orbital

parameters are described in Fig[1]. The orbital variables (𝑟, 𝜙)

and their derivatives are expressed as function of the mean

anomaly u and evolved through time.

Post-Newtonian Approximation

Figure [1]: 

The various 

orbital 

elements 
[Moore et. 
al.(2016)]

Figure 2: The sensitivity 

curves for LIGO and 

LISA detectors. 

[http://gwplotter.com] 

[Moore et. al.(2016)]
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In Post-Newtonian approximation, the

equations of general relativity take the form of

the familiar Newtonian two-body equations of

motion, in the limit
𝑣

𝑐
→ 0 , known as the weak

field limit. A correction of 𝑣/𝑐 𝑛 to the

Newtonian equations counts as an
𝑛

2
order in

the PN expansion. For example, the two-body

equation of motion becomes:
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At each PN order we unravel new physics

beyond the Newtonian regime. The PN

parameter 𝑥 is defined as 𝑥 = 𝑣2/𝑐2. The

evolution of the orbital phase and the

separation are determined by solving the

Energy-Balance equation:

.
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𝑀
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ⅆ𝑡
=
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The solution provides us the amplitude and the

phase required for construction the two

polarization states (ℎ+,ℎ×) of gravitational wave.

These are decomposed into a multipole

expansion where ℎ𝑙𝑚 denotes the various

“modes” of the wave.

.

For black hole binaries characterized by a low

mass ratio (𝑞 ≤ 4) and a total mass less than 100

solar mass, the (𝑙 = 2,𝑚 = ±2) modes

dominate.

[Boetzel et. al.(2016)]



Stationary Phase Approximation (SPA) calculations

Post Newtonian time domain expressions

The time-domain inputs [1] are expressed in terms of Post-

Newtonian order with the leading order being the Newtonian 

term or the 0 PN order. We convert the Fourier transform of 

these-time domain expressions which admits a simple 

analytic structure.
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𝑐2𝑅
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Conversion to frequency domain

The time domain expressions are now 

converted to frequency domain using a Fourier 

transform,

෨ℎ 𝑓 = න

−∞

∞

ℎ𝑙𝑚 𝑡 ⅇ2𝜋𝑖𝑓𝑡 𝑑𝑡

Such an integral can be computed using the 

stationary phase approximation(SPA) [2]. For 

large values of f, the integrand oscillates 

rapidly and causes large cancellations when 

integrated.
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This integral is dominated by times when the 

phase is stationary( ሶ𝜑 = 0). Hence, near the 

stationary point I can Taylor expand 𝜑 as 

𝜑 𝑡 ≈ 𝜑 𝑡0 +
1

2
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2 +⋯

Substituting this into the integral results,
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Where ሶ𝜑 = 0 (stationary point).

For the quasicircular case, the stationary 

condition gives us,

2𝜋𝑓 = 𝑚 ሶ𝜙 𝑡0 = 2𝜋 𝑚𝐹(𝑡0)

Where 𝜙 is related to the instantaneous orbital 

frequency 𝐹(𝑡). Thus we get mth harmonic 

frequency as,

𝑓 = 𝑚 𝐹(𝑡0)

For eccentric time domain expression we have 

additional nonlinear terms that enter the Fourier 

transform integral. To treat these terms, we do 

an approximation of the phase as 𝜙 = 𝑙 + 𝑑𝑙.

Where 𝑙 is the mean anomaly. At the Newtonian 

order 𝜙 and 𝑙 are equivalent. ⅆ𝑙 is the 

correction term. Using 𝜙 = 𝑙 + 𝑑𝑙 we rewrite the 

integrals as,

ⅇ∓𝑘𝑑𝑙 න

−∞

∞
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The stationary condition changes as,

𝑓 = 𝑚 ∓ 𝑘 𝐹

In the eccentricity ⅇ → 0 limit, you get the 

circular limit. Here 𝑘 depends on the order of 

eccentricity of the time-domain expression.

Figure 3:  The 22 mode 3PN order time domain expression plot.

[Boetzel et. al.(2016)]



Results and Future Work

Frequency domain expression for higher modes

Using the SPA method, we find a general form for the expression in frequency domain. The 

frequency domain is expanded in powers if v to 3PN order. The coefficients involved in the 

expressions are worked out for all modes from l=2 to l=5.
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Comparison with the most accurate waveform 

Figure 4: A 

plot of the 22 

mode in 

frequency 

mode for 

various initial 

eccentricity. 

We see 

oscillations in 

the plot that 

amplifies 

when 

eccentricity 

increases

Figure 5: 

The 

“match” 

plots..

Figure 5 shows the “match” plots using the full 

eccentricity expanded to  Ο(ⅇ6) as the target 

waveform. The red plot is a match for 

eccentricity expanded to second order with the 

target with a leading-order phase term W. The 

black plot is for the same phase but for 

eccentricity expanded to order 6. We see a 

match of 99 % for eccentricity around 0.22 and 

0.28.

The most accurate 3PN expression is when we 

include the full expression for the eccentricity-

induced oscillatory phase term W with eccentricity 

expanded to Ο(ⅇ6). Using this as a target waveform, 

we calculate the ”match” for waveforms with just a 

leading order W phase term. The “match” is 

calculated as
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